

Centre d'Études et de Recherches Technologiques en Microélectronique

Techniques d'analyse de surface ESCA: electron spectroscopy for chemical analysis XPS: X-ray photoelectron spectroscopy

Le 29 septembre 2016

M. VAYER Marylene.vayer@univ-orleans.fr

Liste échantillons

Démonstration - Kratos (Manchester) Thermo Fisher Scientific (East Grinstead) Phi (Minnesota)

Liste des échantillons

- Couche de SrRuO₃ sur BaTiO₃
- Agrégats métalliques Pt/Ag et Ag/Co sur couche de carbone
- Films de mélanges de polymère (PS / PLA) et PS/Ru
- Molécules organiques greffées sur carbone vitreux
- Tissus de carbone imprégnés de phosphate de Ca

XPS : Photons in ---- électrons out Origine des photo-électrons

Energie de liaison en fonction du numéro atomique

Analyse élémentaire de tous les éléments (Li→U) sauf H et He

Exemple: Echantillon de Ba TiO₃ Spectre complet

L'énergie des niveaux atomiques de cœur de l'atome ionisé dépend de la liaison chimique et donne donc une information sur la liaison chimique ou l'état chimique des atomes

L'énergie cinétique des photoélectrons est comprise entre qq eV et 1000 eV Le libre parcours moyen des électrons (entre deux chocs inélastiques) est de l'ordre de 1 nm.

 $E_{cin} = h_V - E_{liaison}$

Pour qu'un électron soit caractéristique, il doit sortir de l'échantillon sans avoir perdu d'énergie

Le libre parcours moyen des électrons λ (entre deux chocs inélastiques) est de l'ordre de 1 nm.

Les photo-électrons proviennent en majorité d'une profondeur inférieure au libre parcours moyen et au plus de 3 λ

Pour modifier la profondeur sondée, on peut

- soit modifier l'énergie des photons

Al K α photon energy = 1486.6 eV

Ag L α photon energy = 2984.2 eV

- soit travailler en analyse angulaire ARXPS - soit travailler sur des raies de niveaux différents Ba 3p Eb ≈ 1137 eV donc Ec ≈350 eV si Al Kα et λ ≈ 0.7 nm Ba 4d Eb ≈ 90 eV donc Ec ≈1400 eV si Al Kα et λ ≈ 2 nm

XPS : modification énergie des photons

Source :

Al K α photon energy = 1486.6 eV Ag L α photon energy = 2984.2 eV Zr L α photon energy = 2042.4 eV avec monochromateur

Ag Lα source

Al Ka source

Al 2p E liaison = 74 eV E cinétique = 2910 eV Prof échap= 2.5 nm Al 2p E liaison = 74 eV E cinetique = 1410 eV Prof échap = 1 nm

Avec source Ag Possibilité d'étudier des niveaux plus profonds et épaisseur de couche plus importante

XPS : modification énergie des photons

Source :

Al K α photon energy = 1486.6 eV Ag L α photon energy = 2984.2 eV **avec monochromateur**

Ag Lα source

Al 2p E liaison = 380 eV E cinétique = 2604 eV Prof échap= 2.3 nm

	Rela concentr		
X-ray Source	Pt 4d	Ag 3d	Ratio Pt:Ag
Al	51	49	1.0
Ag	70	30	2.3

Nanoparticules sur Si Pt / Ag

Al Kα source

Al 2p E liaison =380 eV E cinetique = 1100 eV Prof échap = 0.9 nm

XPS: Analyse élémentaire, chimique, quantitative de la surface

Si on suppose un volume semi-infini et échantillon homogène

On obtient
$$I_{i,j}$$
= F *K_{i,j} * $\sigma_{i,j}$ * N _{i,j} * $\lambda_{i,j}$

Sinon

il faut un modèle et donc connaitre la répartition des éléments

XPS: Analyse élémentaire, chimique, quantitative de la surface

Binding energy (eV)

XPS: Analyse élémentaire, chimique, quantitative de la surface

Sample 1 - Thin layer of SrRuO3 on BaTiO3

Suggested Functionalities	C-C	C-O	C=O	0-C=0	SrOx	RuO ₂	RuO₃
Peak energy / eV	284.93	286.29	288.43	289.53	268.45	285.47	286.86
FWHM/eV	1.19	1.19	1.19	1.19	2.84	1.15	2.14
Relative concentration / %	58.94	7.62	11.35	7.13	6.33	2.37	6.27

XPS:aspects technologiques

XPS : Photons in ---- electrons out

Analyse angulaire XPS: ARXPS

 40°

250000

200000

150000

100000

50000

0

380378376374372370368366364362360

Binding energy (eV)

Counts per second

-55° — 63°

Motorisation du porte-échantillon et pilotage par le soft

Profondeur d'information : Variable avec l'angle – réduction d'un facteur 2

55°

-63

Normal emission 'bulk' sensitive

50000

d > d* where $d=3\lambda \sin\theta$

Grazing emission surface sensitive

XPS : Photons in ---- électrons out

Imagerie XPS

Résolution annoncée par les constructeurs (<3 µm)

Détecteur: channel plate (imagerie).

Survey scan 3 Scans, 1 m 42.0 s, 900µm, CAE 200.0, 1.00 eV

Fibre de carbone recouverte de carbonate de calcium

area indicated on optical view

2.0

1.5

1.0

X (mm)

Profil en profondeur par décapage ionique

$\operatorname{Ar}_{n}^{+}$ Analysed Area Ar⁺ Source combinée monoatomique et Ion Beam d'ions cluster chez tous les constructeurs cluster: 0.2keV — 20keV Cluster 500 à 2000 atomes Monatomic Ion Beams **Polyatomic Ion Beams** Deep penetration Shallow penetration Monoatomique: 0.2KeV jusqu'à 20keV Bond scission Surface-localised Collision cascade Collision spike **Combinaison abrasion/XPS Profil:** Composition élémentaire ICMN Orleans-08.103.Sample 3+2 1.pro: ICMN Orleans-08.PS/Ru GCIB 5kV10nA3x3 PHI Composition état chimique 4.4211e+001 max 2016 Apr 13 Al mono 48.2 W 200.0 µ 45.0° 26.00 eV O1s/1: PS/Ru GCIB 5kV10nA3x3 (Binom3 ICMN Orleans-08.103.Sample 3+2_1.pro 100 Si 2p 90 80 C 1s.cf3 Atomic Concentration (%) 70 60 50

40

30

20

10

CI 2p N 1s

40

60

20

Ru 3p3

80

100

Sputter Time (min)

120

140

200

01s

160

180

Profil en profondeur par décapage ionique comparaison des différents décapages

Monatomic Ar ion gun

500 V Ar+ - 1 μ A – etch rate ~ 8.3 Å for SiO2

C60 cluster source ion gun

20 kV C60+ - 15 nA – 333 eV/atom – etch rate ~18 Å/min for SiO2 and ~222 Å/min for PMMA

Ar gas cluster ion gun (GCIB)

5 kV Ar1300+ - 10 nA – 3.8 eV/atom – etch rate ~ 75 Å/min for PMMA

PLA =(C3H4O2)n

Epaisseur au total (PLA-PS-PLA) =100 nm

Monatomic Ar ion gun 500 V Ar+ - 1 μ A – etch rate ~ 8.3 Å for SiO2

40 60 80 100 120 140 160 180 200

C60 cluster source ion gun 20 kV etch rate ~18 Å/min for SiO2 and ~222 Å/min for PMMA

Sputter Time (min)

Ar gas cluster ion gun 5 kV Ar1300+ - 10 nA – 3.8 eV/atom – etch rate ~ 75 Å/min for PMMA

PI

Results Summary Sample 3 (PLA/PS/PLA)

ISS: Ion scattering spectroscopy

Ion in (He+) --- ion out (He+)

La perte d'énergie cinétique dépend du rapport de masse ion incident M1/ atome de surface M2

Canon à ion He⁺: source cluster peut être utilisée Analyseur: analyseur hémisphérique en analyse d'ions +

Profondeur d'information : première couche de la surface <0.5-1 nm

REELS: Reflection Electron Energy Loss Spectroscopy

électron in (e⁻) --- électron out (e⁻)

Canon à e⁻ : canon de compensation de charges **Analyseur :** analyseur hémisphérique

Information : analyse semi-quantitative de hydrogène Positionnement des orbitales libres

Électrons : 1keV profondeur échappement = 2 nm

AES: spectroscopie electron Auger

AES : électrons in ---- électrons out

Canon à e⁻ : FEG (spot de 100 nm) **Analyseur électrons:** channeltron/channelplate

Procédé à 3 électrons:

Analyse difficile sur les états chimiques

Profondeur d'analyse = idem XPS

 $E(KL_1L_{2,3}) \approx E(K) - E(L_1) - E(L_{2,3})$

Imagerie SEM/SAM

Atmospheric corrosion of nickel

20 µm

20 microna

20 microns

UPS : Photons in (He⁺) ---- électron out

UPS : analyse bande de valence

Source He⁺ à haut flux He1: 21.21 eV Profondeur d'information: 2 à 3 nm

Analyseur électrons: analyseur hémisphérique channeltrons

UPS: Example: Si (111) 7x7

STM images of occupied surface states on a Si(111)7x7 surface a) topographic image b) states at -0.35eV ;

- c) states at -0.8eV;
- d) states at -1.7eV

Imagerie SEM/EDS

SEM : électrons in ---- électrons out

EDS : électrons in ---- photons out

Canon à e- : FEG

Analyseur électrons: channelplate

Canon à e⁻ : FEG **Analyseur RX:** disponible chez Thermofisher

Les types de spectroscopies

- XPS Elemental and chemical state quantification
- Photons in, electrons out
- UPS Band structures and work function
- Photons in, electrons out
- REELS Hydrogen and band gap
 - Electrons in, electrons out
- ISS (LEIS) Ultra thin film composition and coverage
 Ions in, ions out
- AES Elemental and chemical state quantification
- Electrons in, electrons out

démos

Démonstration - Kratos (Manchester) Thermo Fisher Scientific (East Grinstead) Phi (Minnesota)

Liste des échantillons

- Couche de SrRuO₃ sur BaTiO₃
- Agrégats métalliques Pt/Ag et Ag/Co sur couche de carbone
- Films de mélanges de polymère (PS / PLA) et PS/Ru
- Molécules organiques greffées sur carbone vitreux
- Tissus de carbone imprégnés de phosphate de Ca

Résultats des démos

Analyses testées	Thermo	Kratos	Phi
XPS- Al K source Al K $lpha$	Х	Х	Х
ARXPS source Al K α	Х	Х	Х
imagerie XPS source Al K $lpha$	Х		Х
XPS source de RX Ag K $lpha$	Х	х	
Reflection Electron Energy Loss Spectroscopy	Х		
(REELS)			
Ion scattering spectroscopy (ISS)	Х		
Source de décapage cluster argon	Х	х	Х
UV photoelectron spectroscopy (UPS)			
Canon à électron FEG (SEM-Auger-SAM)	Х		
Imagerie EDS (energy dispersive X-ray	Х		
spectroscopy)			

Equipements:

- identiques (pour XPS, source décapage) en terme de résolution, convivialité et rapidité d'acquisition
- **différents** en terme de

- vide
- Automatisation
- Introduction des échantillons
- Options SEM/EDS
- Réactivité des personnes contactées

Equipement et coût catalogue

Cout des Equipements	Thermo (K€)	Kratos (K€)	Phi (K\$)
XPS-ARXPS-imagerie XPS RX Al K $lpha$	Γ X	∫ X	695
Reflection Electron Energy Loss Spectroscopy (REELS)	X	667	-
Ion scattering spectroscopy (ISS)	X	8	-
source de RX Ag Lα/Zr	^L 589	8	5
Chauffage refroidissement échantillon	20	19	62
Source de décapage cluster argon	103	102	215
UV photoelectron spectroscopy (UPS)	35	34	75
Canon à électron FEG (SEM-Auger-SAM)	160	113	-
Imagerie EDS (energy dispersive X-ray spectroscopy)	50	-	-
Source de décapage C60			173
Maintenance (/an)	11	13	
Consommables (/an)	≈ 5	≈ 5	

X: Equipements en configuration de base

X: Equipements en option