

Séminaire Scientifique CERTeM 2020

Nouveau banc de polarisation et caractérisation de propriétés piézoélectriques

Jeudi 29 septembre 2016

SOMMAIRE

- Nos études actuelles quelques exemples
- Description du banc de caractérisation
 - Céramiques massives
 - Films épais
 - Films fins
- Conclusions

- ➔ Optimisation des conditions de polarisation nécessaire (Champ électrique, température, temps....)
- ➔ Mesures des propriétés après l'étape de polarisation (mesures d'impédance électrique ou Berlincourt-mètre (d₃₃)

Echantillo n	BHT 5% Att	BHT 7,5% Att	BHT 10% Att	BHT 5% Att
T° _{frittage} (°C)	1400	1400	1400	1500
ϵ_{33} S/ ϵ_0	655	740	790	695
k _t (%)	31	31	34	45
δm (%)	20	32	21	11
δe (%)	1	1	1	3

Collaboration avec l'IJS et VERMON (thèse en co-tutelle H. Mercier)

Films épais sans plomb (KNNSr – Electrophorèse)

- Déposition sur des substrats de formes complexes;
- Dépôt de films épais (plusieurs dizaines de microns);
- Méthode peu couteuse.

- Faible conductivité.

Figure de mérite pour le matériau piézoélectrique : FOM_{mat} = $e_{31,f}^2/(\epsilon_0 \epsilon_{33})$

 \rightarrow Mesure du coefficient e_{31,f} indispensable

Piezoelectric evaluation system (PES)

aixPES

Banc de caractérisation

Céramiques massives

- Tension maximale applicable +/-4000 V
- Utilisation d'huile silicone possible
- Taille maximale des échantillons (diamètre 26 mm et épaisseur 10 mm)
- température : ambiante à 250° C ;
- mesures C(V), ϵ , tan δ ,d₃₃ (petit et grand signaux), P_r⁺, P_r⁻, V_c⁺, V_c⁻,

Films épais et mesures de e31,f (indirect)

- Tension maximale applicable +/-500 V
- Utilisation d'huile silicone possible
- Cuve de 50mm*50mm
- température : ambiante à 250° C ;
- mesures C(V), ϵ , tan δ ,d₃₃ (petit et grand signaux), P_r⁺, P_r⁻, V_c⁺, V_c⁻,

Films épais et mesures de e31,f (indirect)

Relations utilisées:

$$e_{31,f} = \frac{Y_s(h_s)^2}{3(1-v_s)L^2} \frac{\delta}{V}$$

- h_s : substrate thickness
- Y_s : substrate Young's modulus
- v_s : substrate Poisson's ratio
- L : cantilever length
- V : applied voltage
- δ : displacement (measured at L)

Electrode partielle

$$e_{31,f} = \frac{Y_s(h_s)^2}{3(1-v_s)} \frac{1}{c_f x_1(2L-x_1)} \frac{\delta}{V}$$

 c_f : electrode coverage factor (elect. width/subst. width) x_1 : electrode length

¹ I. Kanno et al. / Sensors and Actuators A 107 (2003) 68–74
² M.-A. Dubois and P. Muralt, Sens. Actuators 77, pp106 (1999)
³ Chun, D.-M., Sato, M., and Kanno, I., Journal of Applied Physics 113, 044111 (2013)
⁴ A. Mazzalai, D. Balma, N. Chidambaram, J. Li, and P. Muralt, P., Proc. of ISAF/PFM, pp363-366, 2013

U N 1

Banc de caractérisation

Films épais et mesures de e31,f (indirect)

Placement de l'échantillon:

Films épais et mesures de e31,f (indirect)

Placement de l'échantillon:

3. Release the clamping device and pull back the inserting aid completely.

4. Place the heating cover and contact the sample using the positioner.

Normal Sample contacting area

Films fins et mesures de e_{31,f} (direct)

Placement de l'échantillon:

Films fins et mesures de e_{31,f} (direct)

Placement de l'échantillon:

4. Lower the contacting lever using the turning knob on top of the sample holder, until it hits the sample

Be careful. The sample could break, if there is too much force on it.

5. Pull out the placing aid on the heater unit completely

Films fins, mesures de d₃₃ et cycles de polarisation

Piezoelectricity and materials

Most used material for MEMs applications : PbZr_{1-x}Ti_xO₃

- High piezoelectric coefficients
- High electromechanical coupling

Enhanced properties at MPB due to coexistence of R and T (60's)

Du et al. Appl. Phys. Lett., Vol. 72, No. 19, 11 May 1998

PZT phase diagram

Piezoelectricity and materials

MPBs revisited in late 1990's early 2000's

Existence of monoclinic phases at the MPB

Structural bridge between R and T phases

Polarization rotation during R → M → T transitions key for giant piezoelectric coefficients

Universal mechanism for giant piezoelectric coefficients materials

Relaxors-ferroelectrics PMN-xPT and PZN-xPT (1-x)Pb(Mg_{1/3}Nb_{2/3})O₃-xPbTiO₃ and (1-x)Pb(Zn_{1/3}Nb_{2/3})O₃-xPbTiO₃)

Problem : they are all Pb-based and about to be banned by European regulations

2 starting point where MPBs already observed:

BiFeO₃ (rhombo.)

(1-x)BiFeO₃+ xPbTiO₃ (tetra.)

2 starting point where MPBs already observed:

BiFeO₃ (rhombo.)

2 starting point where MPBs already observed:

BiFeO₃ (rhombo.)

=> (1-x)BiFeO₃ + xGaFeO₃ = BGFO(x)

2 starting point where MPBs already observed:

BiFeO₃ (rhombo.)

+

GaFeO3 (tetra.)

=> (1-x)BiFeO₃ + xGaFeO₃ = BGFO(x)

> (1-x) $[BaZr_{0,2}Ti_{0,8}O_3]$ -x $[Ba_{0,7}Ca_{0,3}TiO_3]$

2 starting point where MPBs already observed:

BiFeO₃ (rhombo.)

GaFeO3 (tetra.)

=> (1-x)BiFeO₃ + xGaFeO₃ = BGFO(x)

 \succ (1-x) [BaZr_{0,2}Ti_{0,8}O₃]-x [Ba_{0,7}Ca_{0,3}TiO₃]

2 starting point where MPBs already observed:

BiFeO₃ (rhombo.)

Yang et al, Materials Research Bulletin 47 (2012) 4233-4239

GaFeO3 (tetra.)

=> (1-x)BiFeO₃ + xGaFeO₃ = BGFO(x)

 \succ (1-x) [BaZr_{0,2}Ti_{0,8}O₃]-x [Ba_{0,7}Ca_{0,3}TiO₃]

2 starting point where MPBs already observed:

=> (1-x)BiFeO₃+ xGaFeO₃ = BGFO(x)

D₃₃ evaluation in thin films complicated by 2 limiting factors :

 Small applicable voltage 10V / 100nm = 1MV/cm

 $\Delta z = D_{33} * V => 1-100 \text{ pm!}$

Rigid substrate model

K. Lefki and G. J. M. Dormans Journal of Applied Physics **76**, 1764 (1994)

$$d_{33}^{eff} = d_{33} - \frac{2s_{13}^E}{s_{11}^E + s_{12}^E} d_{31}$$

substrate contribution

=> Small displacements to measure

Dual Beam Laser Interferometry (Doppler effect)

Picometric sensitivity

The substrate is not that rigid! The piezoelectric film can bend it... Substrate deformation depends on top electrode size...

Possible solution (bandage) :

Place the reference beam beside the top electrode \Rightarrow Polytech MSA500

The substrate is not that rigid! The piezoelectric film can bend it... Substrate deformation depends on top electrode size...

Possible solution (bandage) :

Place the reference beam beside the top electrode \Rightarrow Polytech MSA500

Better solution :

Place the reference beam **below** top electrode

 \Rightarrow Future equipment

Macroscopic Piezo-response BGFO(x)

Dual Beam Laser Interferometry MSA500

BGFO(x) 130nm/LSMO 25nm/STO

Au top electrode size =30x30 µm (200nm)

d_{33eff} mapping on and around one top electrode

Cartographie possible avec les 2 faisceaux lasers du même côté => indispensable pour les CMUT

Macroscopic Piezo-response BGFO(x)

Ferroelectric loops in BGFO(x)

P(E) loops @ 77K

BGFO(x) 130nm/LSMO 25nm/STO

Testeur ferroélectrique RADIANT LC (Grandmont)

Clear transition between 2 ferroelectric states around 6.3%

Almost no P_R @ x=6.3%

Piezo-response in BGFO(6.4%) vs epitaxial PZT

Relaxation of the film reduces clamping effects

Strong influence of the film thickness on measured d₃₃

Piezo-response in BGFO(6.4%) vs epitaxial PZT

Relaxation of the film reduces clamping effects

Strong influence of the film thickness on measured d₃₃

This study 55 pm/V @ 135nm ⇒ Compares with best published epitaxial PZT value

Dual Beam Laser Interferometry

D_{33eff} Vs DC excitation

Ferroelectric @ RT but Pr~0 (polycristal.)

Cycles automatisés VBA = 10mn (60pts)

D_{33eff} Vs Zr content

Piezoelectric properties across all libraries

=> D_{33eff} increase probably due to the presence of a MPB

Piezoelectric properties across all libraries

Piezoelectric properties across all libraries

Futur banc de caractérisation

Interféromètre Laser + Mesures électriques

Films fins et mesures de d_{33,f}

Quelques caractéristiques

- résolution de 1 pm minimum
- mesures rapides (quelques secondes);
- Mesures possibles sur des plaquettes 6 pouces.

Mesures petits signaux

Banc de caractérisation

Films fins : mesures de d_{33,f} et permittivité

dielectric (\mathcal{E}_{33}) and effective piezoelectric ($d_{33,f}$) coefficient

On mesure la réponse à la fréquence d'excitation (small signal) => lock-in

- Mesure de la variation de charge => C puis ε
- Mesure du déplacement => d_{33,f}

Les 2 cycles en quelques secondes...

Films fins : mesures de polarisation et allongement

Mesures grand signaux

polarization (P_3) and mechanical displacement (Δx_3)

On mesure la réponse à la fréquence d'excitation fort signal

- Mesure de la variation de charge => polarisation
- Mesure du déplacement => allongement

Les 2 cycles en quelques secondes...

CONCLUSION

- Plateforme complète contenant deux systèmes séparés mais basés sur une même configuration pour l'outil de pilotage;
- Utilisable pour différentes formes et épaisseurs de matériaux piézoélectriques;
- Optimisation des paramètres pour diverses applications.

